RECONNAISSANCE / SCIENCE

I-MIM MEASUREMENT DEFINITION TEAM

Humans to Mars Summit
18 MAY 2022

Tim Haltigin
MDT Executive
Senior Mission Scientist, Planetary Exploration
Canadian Space Agency

INTERNATIONAL
MARS ICE MAPPER MISSION
ASI – CSA – JAXA – NASA – NSO
• Many agencies have similar goals for both human exploration and science in their strategic plans related to ice for ISRU, and for the search for life and the geologic and climate history of Mars

• Highly leveraged cost-sharing partnership for affordability and achievability in the next decade
Anchor Payload

• Anchor payload is a polarimetric Synthetic Aperture Radar (SAR)

• Tailored for detection of shallow subsurface ice and characterization of surface properties

Measurement Definition Team (MDT)

• Internationally competed team of radar, human exploration, and planetary science experts

• Key Task: provide measurement requirements for SAR payload and identify potential complementary payloads required to assess candidate human landing sites
WHERE IS THE HUMAN-ACCESSIBLE ICE ON MARS?

1. ICE PRESENCE AND CONCENTRATION
- Depth to Top of Ice Table (thickness of overburden)
- Ice Mass in Column of 10 m
- Nature of Ice/Overburden Transition
- Layering of Ice in Upper 10 m
- Candidate Ice Lenses in Overburden
 - Spatial Continuity of Ice (Patchiness)
 - Horizontal Distribution of Ice within 5 km Radius

2. LATERAL EXTENT & CONTINUITY OF ICE
- Solutes in Ice or Ice Matrix
- Rocks in Ice or Ice Matrix
- Ice Porosity
- Layering and Tilt of Lithics in Ice
- Presence of Liquids

3. NON-ICE CONSTITUENTS IN THE MATRIX
- Thermal Properties of Overburden (thermal inertia)
- Density of Overburden
- Load-bearing Capacity of Overburden
- Average/Bulk Porosity of Overburden
- Hardness of Overburden
- Stratigraphy/Interbedding

CAN REGIONS OF HUMAN-ACCESSIBLE ICE SUPPORT SURFACE OPERATIONS?

4. OVERBURDEN PROPERTIES
- Surface Rock Size Distribution
- Lithology of Surface Cover
- Surface Morphology
- Surface Topography and Texture
- Ice Emplacement
- Ice Age
- Ice/Snow/Firn Grain Size and Density
- Surface Frost Thickness, Extent, Seasonality, Composition
- Temperature Profile
- Surface Environment
- Subsurface Diurnal or Seasonal Ice/Ice-soil Mixtures
- Presence/Volume of Methane Clathrates

WHAT ADDITIONAL ICE SCIENCE IS POSSIBLE?

5. SURFACE CHARACTERISTICS
- Degree of Mass Wasting
- Aeolian Changes
- Depth to Bedrock

6. POST-LANDING SCIENCE
- Overburden Properties
- Post-landing Science

LONG-TERM HMP ‘NICE TO HAVES’

OVERBURDEN PROPERTIES
- Surface Seismicity
- Surface Impact Rate
- Surface Rock Fracture Toughness
- Surface Soil/regolith Angle of Internal Friction
- Surface Soil/regolith Permeability
- Degree of Mass Wasting
- Aeolian Changes
- Depth to Bedrock
I-MIM Provides Dual Reconnaissance and Science Benefits

To maximize return on investment, the MDT has identified significant scientific contributions that align with each partner Agency’s strategic goals for Mars exploration.

<table>
<thead>
<tr>
<th>ATMOSPHERIC SCIENCE</th>
<th>GEOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Volatile Cycling</td>
<td>Cratering Rate</td>
</tr>
<tr>
<td>Fine Structure of Layered Deposits</td>
<td>Mobile Sediments, Mass Wasting, and Seasonal Change</td>
</tr>
<tr>
<td>Seasonal Variability in:</td>
<td>Flowing Ice</td>
</tr>
<tr>
<td>Seasonal Ice Cap Thickness</td>
<td>Tectonic/Volcanic Activity</td>
</tr>
<tr>
<td>Near-surface Ice Abundance</td>
<td></td>
</tr>
<tr>
<td>Depth to Ice Table</td>
<td>Polar deposits</td>
</tr>
<tr>
<td>Presence of Snowfall</td>
<td>PLDs</td>
</tr>
<tr>
<td>2 Ionosphere Irregularities (total electron content)</td>
<td>CO₂</td>
</tr>
<tr>
<td>3 Recurring Slope Lineae</td>
<td>Mid-latitude Ice</td>
</tr>
<tr>
<td>Near-surface Ice/Moisture Content</td>
<td>Recent Volcanic Flow Emplacement, Texture, and Composition</td>
</tr>
<tr>
<td>Surface Composition & Deformation</td>
<td>Surface/Near-surface Regolith Properties</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Processes shaping the present.</th>
<th>Processes that shaped the geologically recent past.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processes that shaped the more distant past.</td>
<td>Processes that shaped the geologically recent past.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Processes shaping the present.</th>
<th>Processes that shaped the geologically recent past.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processes that shaped the more distant past.</td>
<td>Processes that shaped the more distant past.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Processes that shaped the more distant past.</th>
<th>Processes that shaped the more distant past.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processes that shaped the more distant past.</td>
<td>Processes that shaped the more distant past.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Processes that shaped the more distant past.</th>
<th>Processes that shaped the more distant past.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processes that shaped the more distant past.</td>
<td>Processes that shaped the more distant past.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATMOSPHERIC SCIENCE</th>
<th>HABITABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Volatile Cycling</td>
<td>1 Presence of Liquid Brines</td>
</tr>
<tr>
<td>Fine Structure of Layered Deposits</td>
<td>Global Distribution and Nature of Ice</td>
</tr>
<tr>
<td>Seasonal Variability in:</td>
<td>Past Ice</td>
</tr>
<tr>
<td>Seasonal Ice Cap Thickness</td>
<td>Shallow ice</td>
</tr>
<tr>
<td>Near-surface Ice Abundance</td>
<td>Subsurface Void Detection</td>
</tr>
<tr>
<td>Depth to Ice Table</td>
<td>Large voids (human scale)</td>
</tr>
<tr>
<td>Presence of Snowfall</td>
<td>Small Voids (microbe scale)</td>
</tr>
<tr>
<td>2 Ionosphere Irregularities (total electron content)</td>
<td>Past Fluvial and Glaciofluvial Activity</td>
</tr>
<tr>
<td>3 Recurring Slope Lineae</td>
<td>Planetary Protection</td>
</tr>
<tr>
<td>Near-surface Ice/Moisture Content</td>
<td>Human Health Hazards</td>
</tr>
<tr>
<td>Surface Composition & Deformation</td>
<td></td>
</tr>
</tbody>
</table>
Radar Observations Meet Reconnaissance and Science Needs

- Most of the high-priority reconnaissance objectives can be met with the currently scoped radar instrument, along with a broad suite of additional science investigations

Other Measurements May be Necessary

- The MDT is evaluating the merits of complementary instruments, including high-resolution imaging and low frequency radar sounding capabilities

Human Landing Site Assessment is a Multi-Step Process

- Ice and geotechnical property mapping orbiter would be an important first step in a tiered human landing site selection process
BACK-UP
CO-CHAIRS

Michele LAVAGNA Co-Chair Politecnico di Milano
Jeffrey PLAUT Co-Chair Jet Propulsion Laboratory / California Institute of Technology
Ali BRAMSON Assistant Co-Chair Purdue University

MDT MEMBERS

Oded AHARONSON Planetary Science Institute
Robert ANDERSON Jet Propulsion Laboratory/California Institute of Technology
Chi AO Jet Propulsion Laboratory/California Institute of Technology
Shohei AOKI Institute of Space and Astronautical Science (ISAS), JAXA
Fabrizio BERNARDINI Università Sapienza Roma, DIET
Valentin BICKEL Max Planck Institute for Solar System Research (MPS)
Frances BUTCHER University of Sheffield
Shane BYRNE Lunar and Planetary Laboratory, University of Arizona
Wendy CALVIN University of Nevada, Reno
Michael DALY York University
Marco FERRARI INAF - Institute for Space Astrophysics and Planetology
Alessandro FRIGERI Istituto di Astrofisica e Planetologia Spaziali (IAPS-INAF)
Indujaa GANESHE University of Arizona
Antonio GENOVA Università Sapienza Roma
Matthew GOLOMBEK Jet Propulsion Laboratory/California Institute of Technology
John GRANT Smithsonian Institution, National Air and Space Museum
Cyril GRIMA Institute for Geophysics, University of Texas at Austin (USA)
Svein-Erik HAMRAN University of Oslo
Patrick HARKNESS University of Glasgow
Elise HARRINGTON University of Oslo
Shannon HIBBARD Jet Propulsion Laboratory/California Institute of Technology
Stephen HOFFMAN Aerospace Corporation
Luciano IESS Sapienza University of Rome
Takeshi IMAMURA Graduate School of Frontier Sciences, The University of Tokyo

Atsushi KUMAMOTO Tohoku University
Hiroyuki KUROKAWA Earth-Life Science Institute (ELSI) / Tokyo Institute of Technology
Joseph LALICH Cornell University
Robert LEVY Colgate University
Hiroyuki MAEZAWA Osaka Prefecture University
Hiroyuki MUNK NASA - Space Technology Mission Directorate
Catherine MIYAMOTO University of Tokyo
Michelle MUNAGA Tohoku University, Japan
Catherine NEISH The University of Western Ontario
Stefano NEROZZI Lunar and Planetary Laboratory, University of Arizona
Roberto OROSEI Istituto Nazionale di Astrofisica
David PATTERSON Johns Hopkins University Applied Physics Laboratory
Nathaniel PUTZIG Planetary Science Institute
Hannah SARGEANT The Open University/University of Central Florida
Kanako SEKI University of Tokyo
Yasuhito SEKINE Earth-Life Science Institute (ELSI) / Tokyo Institute of Technology
Laurent SIBILLE Southeastern Universities Research Association (SURA) / NASA KSC
Isaac SMITH York University and Planetary Science Institute
Cassie STUURMAN Jet Propulsion Laboratory/California Institute of Technology
Leslie TAMPPARI Jet Propulsion Laboratory/California Institute of Technology
Nicolas THOMAS University of Bern, Switzerland
Lyle WHYTE McGill University