Viability of a 2033 Crewed Mars Orbital Mission

The Humans to Mars Summit
May 17, 2023

Hoppy Price
Jet Propulsion Laboratory
California Institute of Technology

Example vehicle rendering courtesy of Boeing

© 2023 California Institute of Technology.
Note: This is a JPL internal study, and does not represent NASA planning
Is There Still Time to Implement a 2033 Mission?

- What vehicles are on track to be available for 2033?
 - SLS Block 2
 - Orion
 - Heavy lift commercial launch vehicles (e.g. Falcon Heavy)

- What else would need to be developed for a minimal mission?
 - Current technology space storable chemical propulsion stages could perform the mission
 - A Mars Transit Habitat (MTH) capable of supporting a crew of 4 for a 1.6 to 2.6 year mission would need to be developed
 - This is probably the driving challenge for the mission
 - The MTH design should be flight tested in Earth orbit or at Gateway
 - Extended crewed missions at Gateway would be needed to characterize galactic cosmic radiation health effects

- The Apollo Program went from zero to Apollo 8 in 9 years
- We would have 9 years to develop a 2033 orbital mission
 - (A lander would come later for follow-on missions)
- The effort would need to start ASAP
Notional Mission Scope with Fallback Options

- As a starting point, the project could be scoped for a 2033 short-stay Mars orbital mission with Venus flyby
 - 1.6 year total duration
 - 13 Falcon Heavy class commercial launches in this example
 - 4 SLS Block 2 launches

- A fallback descope could be to a 2033 long-stay Mars orbital mission (no Venus flyby)
 - 2.6 year total duration
 - 5 Falcon Heavy class commercial launches
 - 3 SLS Block 2 launches

- If schedule ends up not being met, the 2.6 year long-stay mission could gracefully slip to 2035 or 2037 with the same vehicle set

- Another descope could be to a 2033 short duration Mars flyby mission
 - 1.5 year duration (no Venus flyby)
 - 4 Falcon Heavy class commercial launches in this example
 - 3 SLS Block 2 launches

- There is a 2035 short duration backup flyby opportunity available
 - 1.6 year mission includes Venus flyby; requires less ΔV than the 2033 flyby mission

- If there are mass issues, the crew could be descoped to 3
Concept for Humans to Mars Orbit in 2033

- Would minimize development & mission risk with less complex systems
 - Current technology hypergolic chemical propulsion (affordable and reliable)
- Launched in segments by SLS and commercial rockets
- Assembled in high Earth orbit or at Gateway
- Crew would return directly to Earth in Orion capsule
- 2033 offers a unique short-stay orbital mission (~1.6 year total duration)
 - The first crew to travel to both Mars and Venus
 - Not a “one-off”, but a crew transport pathfinder for landing missions to follow

- MTH assumptions are based on:
 - “Transit Habitat Design for Mars Exploration”, Polsgrove et al, 2018
 - Masses adjusted for propulsion, EVA support, robotic systems, and leveraging Orion facilities
2033 Short-Stay Mars Orbital Mission Concept

Crew of 4; 570 day round trip

This mission concept example utilizes 17 low-cost conventional hypergolic propulsion stages with a common design (with 3 different tank lengths), possibly using RS-72 or XLR-132 (AR31) engines.

Acronyms:
- EDS = Earth Departure Stage
- HEO = High Earth Orbit or Gateway
- HMO = High Mars Orbit
- LEO = Low Earth Orbit
- MOI = Mars Orbit Insertion
- MTH = Mars Transit Habitat
- TEI = Trans-Earth Injection
- TMI = Trans-Mars Injection

Diagram:
- Mission timeline:
 1. Commercial launches
 2. Commercial launches
 3. Crew launch
 4. Docked in Mars orbit

- Key events:
 - Boost stages for crew stack
 - TEI Stage 1
 - TEI Stage 2
 - MOI
 - HMO

- Venus flyby:
 - ~200 days

- HEO:
 - ~340 days

- Direct Entry:
 - ~30 days

- Total round trip ~570 days

Pre-decisional. For discussion purposes only.

4/11/2023
Long-Stay Mars Orbital Mission Option

Crew of 4; ~950 day round trip

3 SLS launches
5 commercial launches

This mission concept uses 8 biprop stages of a common design, with 3 different versions of tank lengths.

Nothing is pre-positioned in Mars orbit, and no Mars orbit rendezvous would be required for this mission design.
2033 Short Duration Mars Flyby Mission

- Based on Boeing study for 530 day mission (modified version of their Case 5)
- With conventional space storable chemical propulsion for the Earth Departure Stage (EDS) and the Deep Space Burn (DSB) stage, the following launches would be required in this example:
 - 3 SLS launches (incl. Orion launch with crew)
 - 4 Falcon Heavy class commercial launches
- Should the schedule slip, a 2035 backup short duration Mars flyby mission opportunity is available which includes a Venus flyby

\[\Delta V = 2.615 \text{ m/s} \]
This mission concept example utilizes 17 low-cost conventional hypergolic propulsion stages with a common design (with 3 different tank lengths), possibly using RS-72 or XLR-132 (AR31) engines.

All of the notional launch dates are very flexible except for the final one with the crew launch.
SLS Block 2 and Commercial Launch Concepts for Mars Orbit 2.6 year Mission

This mission concept example utilizes 8 low-cost conventional hypergolic propulsion stages with a common design (with 3 different tank lengths), possibly using RS-72 or XLR-132 (AR31) engines.

All of the launch dates are very flexible except for the final one with the crew launch.
SLS Block 2 and Commercial Launch Concepts for 2033 Mars Flyby 1.5 year Mission

This mission concept example utilizes 6 low-cost conventional hypergolic propulsion stages with a common design (with 2 different tank lengths), possibly using RS-72 or XLR-132 (AR31) engines.

All of the launch dates are very flexible except for the final one with the crew launch.

Earth Departure Stage (EDS) to MEO
SLS Launch #1

2 commercial launches to MEO of boost stages to position EDS in HEO

2 commercial launches to MEO of boost stages to position transit stack in HEO

Integrated Mars transit stack to MEO
SLS Launch #2

Orion with crew for docking with MTH in HEO
SLS Launch #3

~76 t

~40 t

~36 t

~7 t
SLS Block 2 and Commercial Launch Concepts for 2035 Mars and Venus Flyby 1.6 year Mission

This mission concept example utilizes 4 low-cost conventional hypergolic propulsion stages with a common design (with 2 different tank lengths), possibly using RS-72 or XLR-132 (AR31) engines.

All of the launch dates are very flexible except for the final one with the crew launch.

Earth Departure Stage 1 (EDS 1) to HEO
SLS Launch #1

Boost stage ~32 t
2 commercial launches to MEO of boost stages to position transit stack in HEO
SLS Launch #2

Mars transit stack to MEO
MTH ~40 t
SLS Launch #3

EDS 1 ~48 t
EDS 2 ~48 t
Boost stage ~32 t
Boost stage ~32 t

~88 t

This is probably the most feasible of all of the options.

Pre-decisional. For discussion purposes only.
A 2033 orbit-only or flyby mission could be feasible. There would be fallback options if the schedule could not be met. It would be a bold mission to pull off, and there are a multitude of challenges and risks that would have to be accepted.

“We choose to...do [these]...things, not because they are easy, but because they are hard.”
– President John F. Kennedy, 1962