Paragon has worked every major human space flight program since 1999. Our hardware and subsystem designs have flown on NASA spacecraft (Orion, the International Space Station), foreign spacecraft (Soyuz and Mir) as well as commercial spacecraft (CST-100, Bigelow Aerospace, StratEx, and SpaceX). Our *firsts* include the first commercial experiment on the Space Shuttle (in 1996) and the first commercial International Space Station payload on Progress 4 from Russia in 2001.

Current programs include Boeing’s CST-100, Lockheed Martin’s Orion, NASA’s ISS, SNC Dream Chaser, & NG HALO

DEFENSE:
Past defense programs include Lockheed Martin Blackswift Hypersonic Cruise Vehicle, ORS-1 minisatellite, GeoEye2 (now WorldView4) commercial Earth observation satellite, and ATTIKA satellite.

Current programs include BICS & CHIMERA.

COMMERCIAL:
Commercial deep space ventures include Mars One and Inspiration Mars. Other programs include the historic StratEx Mission which set world records that still stand today. Other commercial programs are in various stages of development.
ECLSS—the forgotten subsystem

Human Payload?

NO, NO, NO!

Human Payload!!

ECLSS System
“If the oxygenator breaks down, I'll suffocate. If the water reclaimer breaks down, I'll die of thirst. If the Hab breaches, I'll just kind of implode. If none of those things happen, I'll eventually run out of food and starve to death. So yeah. I'm f*cked.”
“A piloted Mars flyby affords the best opportunity for performing manned planetary exploration with minimal cost and at an early date. The attractiveness of this type of mission stems from the relatively light burden which it imposes on the propulsion system. The usefulness of the flyby mission becomes clearly established when viewed as an in-situ test-bed for evaluating the performance of various subsystems such as navigation, life support, and communications to be used in later landing missions.”— George Mueller (Associate Administrator for NASA Manned Space Flight) in Testimony before Congress, 1966

While navigation and communications are now proven by our spectacular robotic program, the ECLSS remains the challenge to surmount.
ECLSS subsystem diagram

- Life Support
- Thermal Control
- Crew Systems
Human Accommodations: Details and Simple

- 3 Seconds—How long you can survive at vacuum unprotected
- 3 minutes—How long you can survive without Oxygen (roughly) before permanent damage
- 3 days—How long you can survive without Water
- 3 weeks—How long you can survive without food (depending on your starting reserves)

Human Metabolic Needs courtesy NASA (Hanford 2004)

<table>
<thead>
<tr>
<th>Balance</th>
<th>Interface</th>
<th>Units</th>
<th>Nominal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall Body Mass</td>
<td>kg</td>
<td>70.0</td>
</tr>
<tr>
<td></td>
<td>Respiratory Quotient</td>
<td></td>
<td>0.869</td>
</tr>
<tr>
<td></td>
<td>Air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- m</td>
<td>Carbon Dioxide Load</td>
<td>kg/CM-4</td>
<td>0.998</td>
</tr>
<tr>
<td>+ m</td>
<td>Oxygen Consumed</td>
<td>kg/CM-4</td>
<td>0.835</td>
</tr>
<tr>
<td>+ m</td>
<td>Food Consumed; Mass</td>
<td>kg/CM-4</td>
<td>0.617</td>
</tr>
<tr>
<td>+ E</td>
<td>Food Consumed; Energy Content</td>
<td>MJ/CM-4</td>
<td>11.82</td>
</tr>
<tr>
<td>+ m</td>
<td>Potable Water Consumed</td>
<td>kg/CM-4</td>
<td>3.909</td>
</tr>
<tr>
<td></td>
<td>Thermal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- E</td>
<td>Total Metabolic Heat Load</td>
<td>MJ/CM-4</td>
<td>11.82</td>
</tr>
<tr>
<td></td>
<td>Sensible Metabolic Heat Load</td>
<td>MJ/CM-4</td>
<td>6.31</td>
</tr>
<tr>
<td></td>
<td>Latent Metabolic Heat Load</td>
<td>MJ/CM-4</td>
<td>5.51</td>
</tr>
<tr>
<td></td>
<td>Waste</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- m</td>
<td>Fecal Solid Waste (dry basis)</td>
<td>kg/CM-4</td>
<td>0.032</td>
</tr>
<tr>
<td>- m</td>
<td>Perspiration Solid Waste (dry basis)</td>
<td>kg/CM-4</td>
<td>0.018</td>
</tr>
<tr>
<td>- m</td>
<td>Urine Solid Waste (dry basis)</td>
<td>kg/CM-4</td>
<td>0.059</td>
</tr>
<tr>
<td>- m</td>
<td>Water</td>
<td>kg/CM-4</td>
<td></td>
</tr>
<tr>
<td>- m</td>
<td>Fecal Water</td>
<td>kg/CM-4</td>
<td>0.091</td>
</tr>
<tr>
<td>- m</td>
<td>Respiration and Perspiration Water</td>
<td>kg/CM-4</td>
<td>2.277</td>
</tr>
<tr>
<td>- m</td>
<td>Urine Water</td>
<td>kg/CM-4</td>
<td>1.886</td>
</tr>
</tbody>
</table>
The Concept of Closure

Loss as a function of % loss rate PER YEAR (closure)

Amount Left after year X

Losses as a function of % loss rate PER YEAR (closure):
- 1.0%
- 0.5%
- 0.25%
- 0.125%
- 0.0625%
- 0.03125%
- 0.015625%
- 0.0078125%

Parameter	Value	Unit
Leak Rate | Lower | 0.00 %/d
Nominal | 0.05 %/d
Upper | 0.14 %/d

Credits: NASA
What are the Gaps? Can we go Tomorrow?

- **Reliability, Maintainability and Emergency Repair:**
 - ORU Philosophy. Replace the o-ring, or the resister, or PCB, but NOT the assembly.
 - Reliability has to be weighed against severity. ECLSS failures are measured in hours and days, rarely minutes.

- **Medical Provisions:**
 - Medicine- Radiation resiliency, field hospital philosophies
 - Preventive medicine—What do you remove BEFORE you go? Wisdom Teeth, breast tissue, appendix?
 - Phycological problems: 30 years ago, this wasn’t on the list, now it’s a top-5 problem!

- **Integrated, Long-term Testing in a Relevant Environment:**
 - AWAY from Earth—the nearness of escape and safe havens alters the psychology, immediacy, urgency.
 - Microgravity—80% of failures on ISS have been due to microgravity environment—no other place to test long term.
 - For Surface: Form Follows Function. The LAYOUT of the surface systems has to have detailed Ops analysis.

- **Logistics and Command:**
 - There is no Mission Control, there is only mission monitoring once 5 light-seconds from Earth!!
Some References

- **Volume 1, Interstellar Travel: Purpose and Motivations**, published April 7. The Life Support Chapter is in Volume 2 which will be published this fall.

 Interstellar Travel: Purpose and Motivations: Johnson, Les, Roy, Kenneth: 9780323913607: AmazonSmile: Books

- **Grant Anderson TedX WinterPark 2019: “Human Space Flight Takes Humanity with it to the Stars”**
 https://youtu.be/XaOEcTRyeS8

Celebrating 30 years of Pioneering Innovation

THANK YOU